Bioforsk Report Vol. 6 Nr. 109/2011 Characterisation of processed drill cuttings from the TCC RotoMill-process www.bioforsk.no Hovedkontor/Head office Frederik A. Dahls vei 20 N-1432 Ås Tel.: (+47) 40 60 41 00 post@bioforsk.no Bioforsk Jord og miljø Frederik A. Dahls vel 20 N-1432 Ås Tel.: (+47) 40 60 41 00 carl-einar.amundsen@bioforsk.no | e TCC RotoMill-process. | | | | | |--|--|--|--|--| | | | | | | | | | | | | | Project No.: | Archive No.: | | | | | 8153 | | | | | | Number of pages: | ANumber of appendices: | | | | | 21 | | | | | | Contact person: | | | | | | John-Kåre Krokene | | | | | | Field of work: | | | | | | Waste and Environmental | . Contaminants | | | | | | | | | | | n order to demonstrate the A needs to show that the roduct, and with no wors | nat the processed dritty
y are capable of being
e environmental | | | | | e Solids from the TCC Rot
contaminants, potential t | oMill process are
oxicological effects are | | | | | | | | | | | | Number of pages: 21 Contact person: John-Kåre Krokene Field of work: Waste and Environmental on for its processed drill of order to demonstrate the needs to show that they roduct, and with no wors | | | | Approved Project leader Øistein Vethe # 1. Summary #### Background TWMA intends to apply for end of waste certification for its processed drill cuttings (here designated Solids from the TCC RotoMill process). In order to demonstrate that the processed drill cuttings meet the legal test for end of waste, TWMA needs to show that they are capable of being used in the same way as an equivalent non-waste product, and with no worse environmental effects. The total content in Solids from the TCC RotoMill process are compared with mean values for Norwegian agricultural soils, Norwegian overbank sediments and with Norwegian Soil Quality classes. Agricultural soils and overbank sediments are considered as suitable non-waste comparators for the Solids from the TCC RotoMill process. The analysis of dry matter and leaching tests that have been performed on the Solids from the TCC RotoMill process agrees with the demands for basic characterisation of waste prior to landfilling. The leaching tests also agree with the demands for on-site verification. The analysis of dry matter and leaching procedures performed also give information about the physical and chemical properties of the Solids from the TCC RotoMill process necessary for evaluating the re-use options of the treated drill cuttings. #### Total content The Solids from the TCC RotoMill process are characterised by high pH (10-12), high levels of chloride, sulphate, barium and hydrocarbons with chainlength C16-C35. All these parameters are much higher in the Solids than in Norwegian soils. The mean and maximum concentrations of cadmium, lead, mercury, copper, nickel, chromium and zinc, arsenic, polycyclic aromatic hydrocarbons (PAH), are comparable with the content in Norwegian soils and overbank sediment. The present information on the Solids, however, does not indicate that the Solids from the TCC RotoMill process have particular liming or nutrient properties. To evaluate the nutrient and liming potential of the Solids, more specific extractions, as well as pot experiments involving plant growth, has to be performed. The particle size distribution of some Solids, show that they mainly consist of silty material (particle size 2-63 μ m, 50-70%), 5-15% clay (<2 μ m) and 20-40% of sand (60-2000) (silty loam). A high fraction of silt (and some clay), results in high water holding capacity. The specific surface area was determined to $1.61 \, \text{m}^2/\text{g}$ in one Solid sample, which indicate relatively low sorption capacity. Specific surface area of the Solids will vary depending on type of rock formation. #### Leaching Leaching to surface and groundwater water is one of the major environmental concerns when using Solids from the TCC RotoMill process as filler- or construction material (or other applications). The leaching tests (batch extraction test and column leaching test) show that the content of dissolved organic carbon (DOC) exceed the limit set for landfills for hazardous waste. The content of DOC make treatment necessary prior to landfilling The content of the other parameters in the eluate make disposal on landfills for non-hazardous waste possible. ## Toxicity of leachate from Solids from the TCC RotoMill process Based upon comparison of eluate concentrations from the batch extraction test (LS10) with PNEC-values, the detrimental biological effects due to runoff are probable. In most cases, however, the dilution of runoff or seepage from Solids from the TCC RotoMill process is much higher than 10 (which is the ratio between extraction agent (water) and Solid material in the batch extraction test). Another important factor is that the eluate from the solids from the TCC RotoMill process contain both high concentrations of calcium and dissolved organic carbon, probably resulting in significantly reduced toxicity. Barium is present in Solids from the TCC RotoMill process as BaSO₄ which is not soluble in water. It is therefore highly unlikely that barium, both in the Solids and in the leachates, will cause any toxicity to organisms in soils and water. ## Monitoring at disposal sites for Solids from the TCC RotoMill process Three categories of parameters should be included in monitoring programmes were Solids from the TCC RotoMill process are involved: 1) parameters that exceed the PNEC-values; 2) parameters having high concentrations in eluates from leaching tests relative to concentrations in natural waters; 3) parameters that normally are not present in waters. The following parameters should be included in monitoring programmes: pH, Conductivity, Dissolved organic carbon (DOC), Arsenic, Copper, Chromium, Nickel, Barium, Chloride, Sulphate, Fluoride, Hydrocarbons (C10-C35) and Phenols (Phenol Index). ## Re-use options for Solids from TCC RotoMill process Based upon available information on the chemical and physical properties of Solids from the TCC RotoMill process, the Solids may be suitable for use in growing media and filling materials. A relatively low content of clay probably make the hydraulic conductivity to high and the Solids unsuitable as a liner material at landfills. Prior to any application of treated drill cuttings, a risk evaluation has to be performed. The evaluation should include possible positive and the negative aspects of the application. # 2. Introduction The waste considered in this project is recovered solids from the treatment of oil contaminated drilling wastes via the TCC RotoMill process. In this report this waste is termed "Solids from the TCC RotoMill process". The total content of Solids from the TCC RotoMill process is available through three different sampling and analysis regimes (Table 1). The results presented in this report are from these three samplings. Table 1: Overview of sampling programmes, number and type of analysis in each programme, and parameters determined. | Category of sampling | Description | Aı | nalysis | | | | | | |----------------------|--|--|----------|----------|--|--|--|--| | | | Total solids | Leachi | ng test | | | | | | | | | Batch | Column | | | | | | Monthly sampling | Random monthly sample of Solids from the TCC RotoMill process | 23 | 5 | 2 | | | | | | TWMA samples 100g | Composite sample taken during one week from Solids from the TCC RotoMill process | 15 | 0 | 0 | | | | | | TWMA samples 50g | Random sample collected for
every 25tons of processed Solids
from the TCC RotoMill process | 60 | 0 | 0 | | | | | | | Parame | ators | | | | | | | | | | | | | | | | | | Monthly sampling | Heavy metals (23), oil in sand (hydr | ocarbons, 23), | PAH (3), | PCB (1), | | | | | | TWMA samples 100g | Heavy metals (15), PAH (15), cyanic
phenolindex (15), ammonium (6), c
bromide (3) | Heavy metals (15), PAH (15), cyanide (15), sulphate, sulphide, phenolindex (15), ammonium (6), chloride (6) selenium (13), bromide (3) | | | | | | | | TWMA samples 50g | Oil in sand (hydrocarbons, 60), PAH | (60) | ,, | | | | | | In principle there should be no difference between the three sampling regimes when it comes to the composition of Solids from the TCC RotoMill process. The TWMA samples 50g, however, probably give the most representative data for oil in sand (hydrocarbons) and PAH, while the monthly sampling and TWMA samples 100g give the only data for heavy metals (38 samples altogether). The Solids from the TCC RotoMill process are reused as a fill material within the development of a future industrial facility. Possible environmental impacts following this practice will not be discussed in this report. # 3. Composition of treated drill cuttings (TCC RotoMill-process) #### 3.1 Total content Results for single samples are not considered in this project. The focus has been on presenting summary statistics i.e. minimum, mean, median and maximum values, as well coefficients of variation, for the different parameters. The total content in Solids from the TCC RotoMill process are compared with mean values for Norwegian agricultural soils (Esser 1996), Norwegian overbank sediments (Ottesen et al. 2001) and with Norwegian Soil Quality classes (Klif 2009). Agricultural soils and overbank sediments are considered as suitable non-waste comparators for the Solids from the TCC RotoMill process. Comparison with Norwegian Soil Quality Classes relates the composition of the solids to Norwegian legislation and to possible applications of the solids. Soil within Quality class I is considered non-polluted (clean, Norwegian Reference values), while soils within class II are slightly polluted. Soils within class I and II are legal within kindergartens, in private gardens and playgrounds. Class III soils are allowed in rural areas, class IV soils in industrial areas, while soils above class V are considered toxic waste and should be removed immediately and deposited on toxic waste sites. One important question in this context is in what context high single values are important. When the Solids from the TCC RotoMill process are used as a filler or bulking agent in construction/land engineering sector (involving tens or hundreds of loads), single loads containing elevated concentrations will have no negative environmental effect. At smaller locations, however, the environmental consequences may be detectable. # 3.1.1 Heavy metals The mean values for arsenic, cadmium, lead, chromium, copper, nickel, zinc and mercury are all below the limit for Quality class I. The mean concentration for copper in the Solids is two-three times higher the mean concentration in soils and overbank sediments, but still within what could be found in an unpolluted soil. The maximum values for all elements are within class II i.e. the Solids from the TCC RotoMill process can be used within kindergartens, in private gardens and playgrounds. The concentration of barium in the Solids from the TCC RotoMill process is much higher (20-25 times) than what could be found in natural soil (the mean concentration of Barium in the earth crust is 250 mg/kg). The results from the analysis of the TWMA samples 100g (weekly composite samples) (Table 4) leads to more or less the same conclusions: the Solids from the TCC RotoMill process can, based upon the content of heavy metals and arsenic, be used in kindergartens, private gardens and playgrounds. In the TWMA 100g samples the maximum concentration of arsenic slightly exceeds class II limit value. The concentrations of boron in the Solids from the TCC RotoMill process are somewhat higher than is expected in Norwegian soils, but both is within what could be found naturally. The concentrations of sulphur are 5-10 times what is considered normal in soils (see Table 2, overbank sediments). Table 2: Concentrations of heavy metals in soils and Norwegian Quality classes for soils. Unit: mg/kg. | | | | | Soil Quality Class¤ | | | | | |-----------------|-----------------------|------------------------|-------|---------------------|----------|-----------|------------|--| | Parameter | Agr.soil*
(0-5 cm) | Overbank
sediments# | 1 | 11 | l)) | IV | V | | | lron | | 24400 | 41/41 | | | | | | | Sulfur | | 600 | | | | | | | | Copper | 19,2 | 22 | 100 | 100-200 | 200-1000 | 1000-8500 | 8500-25000 | | | Zinc | 63,9 | 54 | 200 | 200-500 | 500-1000 | 1000-5000 | 5000-25000 | | | Lead | 23,9 | 22 | 60 | 60-100 | 100-300 | 300-700 | 700-2500 | | | Cadmium | 0,22 | | 1,5 | 1,5-10 | 10-15 | 15-30 | 30-1000 | | | Vanadium | | 41 | | | | - | | | | Nickel | 21,1 | 22 | 60 | 60-135 | 135-200 | 200-1200 | 1200-2500 | | | Chromium | 27,1 | 32 | 50 | 50-200 | 200-500 | 500-2800 | 2800-25000 | | | Molybdenium | | 2,2 | | | | | | | | Arsenic | | 4 | 8 | 8-20 | 20-50 | 50-600 | 600-1000 | | | Chloride | | 183 | | | | | | | | Mercury | 0,047 | | 1 | 0-1 | 1-4 | 4-10 | 10-1000 | | | | | | | | | | | | | Sum PCB7 | | | 0,01 | 0,01-0,5 | 0,5-1 | 1-5 | 5-50 | | | DDT | Autorate | | 0,04 | 0,04-4 | 4-12 | 12-30 | 30-50 | | | Sum PAH16 | | | 2 | 2-8 | 8-50 | 50-150 | 150-2500 | | | Naphtalene | | | 0,8 | | | | | | | Fluorene | | | 0,8 | | | | | | | Fluorantene | | | 1 | | | | | | | Pyrene | | | 1 | | | | | | | Benzo(a)pyrene | | | 0,1 | | | | | | | Toluene | | | 0,3 | | | | | | | Hydroc C5-C6 | | , | 7 | | | | | | | Hydroc C-C8 | | | 7 | | | | | | | Hydroca C8-C10 | | | 10 | ≤10 | 10-40 | 40-50 | 50-20000 | | | Hydroc >C10-C12 | | | 50 | 50-60 | 60-130 | 130-300 | 300-20000 | | | Hydroc>C12-C35 | | | 100 | 100-300 | 300-600 | 600-2000 | 2000-20000 | | | DEHP | | | 2,8 | 2,8-25 | 25-40 | 40-60 | 60-5000 | | *Esser (1996); #Ottesen et al. (2001); ¤Klif 2009. Table 3: Statistical data for Soilds from the TCC RotoMill process. Monthly samples. | Element | Unit | n | Min | Mean | Median | Max | C۷ | |-------------|-------|----|-------------|------|--------|-------|-----| | Arsenic | mg/kg | 22 | 2,9 | 8 | 9 | 12 | 25 | | Barium | mg/kg | 22 | 700 | 5980 | 6150 | 17000 | 61 | | Cadmium | mg/kg | 23 | 0,2 | 1 | 0,4 | 3 | 222 | | Chromium | mg/kg | 22 | . 25 | 35 | 34 | 81 | 31 | | Copper | mg/kg | 23 | 39 | 54 | 53 | 73 | 16 | | Molybdenium | mg/kg | 22 | 0,9 | 3 | 3 | 14 | 102 | | Nickel | mg/kg | 23 | 18 | 33 | 35 | 48 | 23 | | Lead | mg/kg | 23 | 13 | 29 | 26 | 89 | 100 | | Tin | mg/kg | 22 | 0,2 | 0,5 | 0,3 | 1 | 120 | | Vanadium | mg/kg | 4 | <u>,</u> 23 | 35 | 32 | 52 | 29 | | Zinc | mg/kg | 23 | 53 | 115 | 81 | 470 | 111 | | Mercury | mg/kg | 23 | 0,0 | 0,1 | 0,1 | 0,21 | 75 | Table 4: Statistical data for Soilds from the TCC RotoMill process. TWMA samples 100g. | Element | n | Min | Mean | Median | Max | CV | |----------|----|-------|-------|--------|-------|-----| | Copper | 15 | 37 | 58 | 46 | 130 | 42 | | Arsenic | 15 | 6,6 | 14 | 13 | 21 | 33 | | Lead | 15 | 22 | 33 | 28 | 60 | 35 | | Iron | 6 | 28000 | 34833 | 34000 | 41000 | 15 | | Cadmium | 12 | <0,1 | 0,3 | 0,255 | 1 | 85 | | Chromium | 15 | 21 | 50 | 40 | 84 | 42 | | Nickel | 15 | 18 | 38 | 37 | 61 | 40 | | Zinc | 15 | 46 | 92 | 85 | 170 | 33 | | Mercury | 15 | <0,1 | 4,9 | 0,1 | 69 | 365 | | Boron | 15 | 18 | 58 | 45 | 110 | 58 | | Calcium | 6 | 22000 | 32333 | 32500 | 40000 | 22 | | Sulphur | 11 | 3000 | 8755 | 4300 | 29000 | 94 | ## 3.1.2 Organic components It is not yet clear what hydrocarbons the "Oil in sand" analysis involves, but most probably it includes hydrocarbons C10-C40 i.e. it is equivalent to the analysis hydrocarbons C10-C35 (Table 6). The concentration of oil (hydrocarbons) in the Solids from the TCC RotoMill process is relatively high (Quality Class IV). In organic rich soils some hydrocarbons are present, but at much lower concentrations. Table 5: Concentrations of hydrocarbons in monthly random samples. | | | n | Min | Mean | Median | Max | |-------------|-------|----|------|------|--------|------| | Oil in sand | mg/kg | 23 | 73,0 | 1221 | 1100 | 2600 | PCB-7 was not detected in the random sample collected in the period 4-11. May 2011 (Table 6). Table 6: Concentrations of organic contaminants in Solids from the TCC RotoMill process. Random samples 2011. | | | 4-11/5 2011 | 05.July
2011-I | 05.July
2011-II | |--|-------|-------------|-------------------|--------------------| | Parameter | Unit | 0.0020 | 20114 | 2011 11 | | PCB 28 | mg/kg | <0,0030 | | | | PCB 52 | mg/kg | <0,0030 | | | | PCB 101 | mg/kg | <0,0030 | | | | PCB 118 | mg/kg | <0,0030 | | | | PCB 138 | mg/kg | <0,0030 | | | | PCB 153 | mg/kg | <0,0030 | | | | PCB 180 | mg/kg | <0,0030 | | | | Sum PCB-7 | mg/kg | <0,0030 | | | | | | 0.024 | 0.32 | 0,11 | | Naphtalene | mg/kg | 0,031 | 0,22 | <0,050 | | Acenaphtylene | mg/kg | <0,010 | <0,050 | | | Acenaphtene | mg/kg | <0,010 | <0,050 | <0,050 | | Fluorene | mg/kg | 0,013 | <0,050 | <0,050 | | Phenanthrene | mg/kg | 0,113 | 0,071 | <0,050 | | Anthracene | mg/kg | 0,014 | <0,050 | <0,050 | | Fluoranthene | mg/kg | 0,025 | <0,050 | <0,050 | | Pyrene | mg/kg | 0,066 | 0,067 | <0,050 | | Benzo(a)anthracene | mg/kg | 0,013 | <0,050 | <0,050 | | Chrycene | mg/kg | 0,031 | <0,050 | <0,050 | | Benzo (b)fluoranthene | mg/kg | 0,034 | <0,050 | <0,050 | | Benzo (k)fluoranthene | mg/kg | 0,012 | <0,050 | <0,050 | | Benzo (a) pyrene | mg/kg | 0,018 | <0,050 | <0,050 | | Dibenzo(ah)anthracene | mg/kg | <0,010 | <0,050 | <0,050 | | Benzo(ghi)perylene | mg/kg | 0,07 | <0,050 | <0,050 | | Indeno(1,2,3-cd)pyrene | mg/kg | <0,010 | <0,050 | <0,050 | | Sum 16PAHs | mg/kg | 0,44 | 0,358 | 0,11 | | Benzene | mg/kg | <0,0050 | | | | Total extractable matter with toulen | mg/kg | | 340 | 1200 | | Total extract. matter with cyclohexane | mg/kg | | 2810 | 2510 | | Hydrocarbon C5-C6 | mg/kg | <7 | | | | Hydrocarbon >C6-C8 | mg/kg | <7 | | | | Hydrocarbon >C8-C10 | mg/kg | <10 | | | | Hydrocarbon >C10-C12 | mg/kg | 12 | | | | Hydrocarbon >C12-C16 | mg/kg | 460 | | |----------------------------------|-------|--------|--| | Hydrocarbon >C16-C35 | mg/kg | 2450 | | | Tri-chloro ethene | mg/kg | <0,010 | | | Di-(2-ethylhexyl)phtalate (DEHP) | mg/kg | 0,8 | | | Phenol index | mg/kg | 3,86 | | | o,p-DDT | mg/kg | <0,010 | | | p,p-DDT | mg/kg | <0,010 | | The analysis of hydrocarbons C5-C40 (Table 6) show that the majority of hydrocarbons are long chained (>C16). These are probably less water soluble and toxic than the "lighter" hydrocarbons (<C16). Table 7: Summary statistics for PAH-16 and extractable matter with toluene and cyclohexane. TWMA samples 100g. | | | n | Min | mean | Median | Max | CV | |---|-------|----|-------|------|--------|------|-----| | Naphtalene | mg/kg | 15 | <0,05 | 0,3 | 0,1 | 1,7 | 160 | | Acenaphtylene | mg/kg | 15 | <0,01 | 0,0 | 0,05 | 0,15 | 65 | | Acenaphtene | mg/kg | 15 | <0,01 | 0,1 | 0,05 | 0,15 | 70 | | Fluorene | mg/kg | 15 | <0,01 | 0,0 | 0,05 | 0,15 | 64 | | Phenanthrene | mg/kg | 15 | <0,05 | 0,1 | 0,09 | 0,25 | 56 | | Anthracene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,15 | 46 | | Fluoranthene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,15 | 49 | | Pyrene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,15 | 50 | | Benzo(a)anthracene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,2 | 66 | | Chrycene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,18 | 61 | | Benzo (b)fluoranthene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,44 | 120 | | Benzo (k)fluoranthene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,15 | 46 | | Benzo (a) pyrene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,16 | 58 | | Indeno(1,2,3-cd)pyrene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,29 | 88 | | Dibenzo(ah)anthracene | mg/kg | 15 | <0,05 | 0,1 | 0,05 | 0,15 | 45 | | Benzo(ghi)perylene | mg/kg | 15 | <0,05 | 0,1 | 0,07 | 0,62 | 120 | | Sum PAHs16 | mg/kg | 15 | 0,065 | 1,0 | 0,266 | 3,28 | 112 | | | | | | | | | | | Total extractable matter with toulen | mg/kg | 14 | 100 | 1715 | 895 | 5425 | 101 | | Total extractable matter with cyclohexane | mg/kg | 15 | 120 | 1543 | 1600 | 4130 | 77 | The content of hydrocarbons <C12 are within class I soils in the Norwegian classification system for soils (Table 6). Most samples of Solids from the TCC RotoMill process are however within class IV, making long-chained hydrocarbons one important parameter to include in a monitoring programme. The mean value of sum PAH-16 in TWMA samples 100g (Table 7) is well below the Norwegian reference value (Quality class I) and must be considered low. Three out of 15 samples are higher than 2 mg/kg, but well within Quality class II. Low concentrations of PAH was found in the TWMA samples 50g (Table 8). The mean value (0,33 mg/kg) is comparable with the natural background concentration of PAHs in soils. The content of oil (hydrocarbons) in the Solids from the TCC RotoMill process are much higher than in soils. The total organic matter content (loss on ignition, wt%) is below 10% in all samples. The limit value set for inert landfills is 3% TOC. A mean value of 6,8 on loss on ignition (Table 8), will result in a TOC in the range 3-4 % i.e. slightly above the limit value for inert waste landfills. Table 8: Summary statistics for PAH-16 and extractable matter with toluene and cyclohexane (oil in sand). TWMA samples 50g (sample for every 25tons processed material). | | Enhet | n | Min | Mean | Median | Max | C۷ | |----------------------------|-------|----|-------|------|--------|-------|-----| | Naphtalene | mg/kg | 58 | <0,01 | 0,1 | 0,145 | 0,72 | 102 | | Acenaphtylene | mg/kg | 58 | <0,01 | 0,1 | 0,01 | 0,15 | 107 | | Acenaphtene | mg/kg | 58 | <0,01 | 0,1 | 0,02 | 0,15 | 105 | | Fluorene | mg/kg | 58 | <0,01 | 0,1 | 0,01 | 0,15 | 107 | | Phenanthrene | mg/kg | 60 | <0,01 | 0,1 | 0,05 | 0,15 | 70 | | Anthracene | mg/kg | 60 | <0,01 | 0,1 | 0,01 | 0,15 | 110 | | Fluoranthene | mg/kg | 60 | <0,01 | 0,1 | 0,02 | 0,15 | 95 | | Pyrene | mg/kg | 60 | <0,01 | 0,1 | 0,04 | 0,15 | 83 | | Benzo(a)anthracene | mg/kg | 60 | <0,01 | 0,1 | 0,01 | 0,15 | 107 | | Chrycene | mg/kg | 60 | <0,01 | 0,1 | 0,03 | 0,15 | 90 | | Benzo (b)fluoranthene | mg/kg | 60 | <0,01 | 0,1 | 0,03 | 0,15 | 93 | | Benzo (k)fluoranthene | mg/kg | 60 | <0,01 | 0,1 | 0,01 | 0,15 | 109 | | Benzo (a) pyrene | mg/kg | 60 | <0,01 | 0,1 | 0,045 | 0,15 | 90 | | Indeno(1,2,3-
cd)pyrene | mg/kg | 60 | <0,01 | 0,1 | 0,01 | 0,15 | 109 | | Dibenzo(ah)anthracene | mg/kg | 60 | <0,01 | 0,1 | 0,01 | 0,15 | 111 | | Benzo(ghi)perylene | mg/kg | 60 | <0,01 | 0,1 | 0,03 | 0,17 | 90 | | Sum PAHs16 | mg/kg | 38 | 0,038 | 0,3 | 0,257 | 1,77 | 101 | | Oil in sand | mg/kg | 60 | 79 | 1840 | 960 | 16000 | 135 | | Organic matter | wt% | 60 | 4 | 6,8 | 7 | 9 | 15 | ## 3.1.3 Other parameters The Solids from the TCC RotoMill process are characterised by a high pH and conductivity, and high content of chloride and sulphate, far higher than in Norwegian soils. Also the content of Bromine is higher than in soils. The content of ammonium and selenium are within normal values for Norwegian soils. Cyanide (free and total) has not been detected in any of the Solids from the TCC RotoMill process (Table 9). There is no particular information on the nutrient content of the Solids. XRF-analyses show that the total content of P_2O_5 varies in the range 0.1-0.14%, which are typical for soils. Information on the content of nitrogen is not available, but it is unlikely that there are plant available nitrogen present in the Solids. The content of CaO varies from 7.2-9.5% in the same XRF-analysis. The liming potential of CaO (and MgO, K_2O etc) depends on the solubility of these oxides. pH above 7 in the leaching tests show that the Solids results in basic pH in water, but the liming potential in soils have to be decided by experiments. To evaluate the nutrient potential, more specific extractions, as well as pot experiments involving plant growth, has to be performed. The present information on the Solids, however, does not indicate that the Solids have particular liming or nutrient properties. The particle size distribution of some Solids, show that they consist of 50-70 % silty material (particle size 2-63 μ m), 5-15 % clay (<2 μ m), and 20-40 % of sand (60-2000 μ m). The mean diameter (D(v, 0.5)) in four samples of Solids were 8, 10, 14 and 32 μ m. In a soil terminology, the Solids in most cases are characterised as silty loam. A high fraction of silt (and some clay), results in high water holding capacity. In one of the analysis (D(v, 0.5)=14 µm), the specific surface area was 1.61 m²/g, which is in the kaolinitt (1:1 clay mineral) range. The sorption capacity of this Solid therefore is relatively low compared to 2:1 clay minerals and organic matter. Table 9: Summary statistics for various inorganic parameters and Phenol Index. TWMA samples 100g (weekly composite samples). | | Enhet | n | Min | mean | Median | Max | CV | |---------------|-------|----|-------|-------|--------|-------|-----| | Dry matter | wt% | 6 | 91,7 | 98 | 99 | 100 | 3 | | Hq | рН | 15 | 10 | 11 | 11 | 12 | 6 | | Conductivity | μS/cm | 6 | 286 | 1557 | 1925 | 2450 | 63 | | Ammonium | mg/kg | 6 | 12 | 78 | 81 | 160 | 72 | | Phenolindexs | mg/kg | 15 | 0,01 | 0,4 | 0,48 | 0,86 | 74 | | Chloride | mg/kg | 6 | 11 | 4219 | 4950 | 5600 | 50 | | Selenium | mg/kg | 13 | 0,14 | 2,6 | <2 | 5 | 57 | | Bromine | mg/kg | 3 | 130 | 463 | 430 | 830 | 76 | | Cyanid- free | mg/kg | 15 | <0,05 | <0,1 | <0,1 | <0,1 | 19 | | Cyanid- total | mg/kg | 15 | <1 | <1,0 | <1 | <1 | 0 | | Sulfate | mg/kg | 15 | 61 | 23259 | 17000 | 80000 | 112 | | Sulfide | mg/kg | 9 | 1,1 | 4,0 | 2 | 12 | 93 | ## 3.2 Leaching tests Leaching tests have been performed on some monthly random samples. The tests involve a batch extraction procedure (solid:liquid ratio 10) and a column leaching test (saturated flow, analysis of the most concentrated eluate, LS 0,1). These leaching tests are performed as major parts of procedures to characterise waste with respect to acceptability of waste at landfills. The procedure consists of the basic characterisation, compliance testing and on-site verification and the leaching tests are used in the basic characterisation (column leaching test, LS 0,1) and compliance testing (batch extraction test, LS 10). # 3.2.1 Batch extraction (LS 10) The batch leaching test show that it is only the content of dissolved organic carbon (DOC) in the LS 10-eluate that exceeds the limit value set for landfills for hazardous waste (Table 10). The content of the other parameters in the eluate make disposal on landfills for inert or ordinary waste possible. Table 10: Summary statistics for results from batch extraction tests (LS10).Random samples. Green: landfill for inert waste; Blue; landfill for non-hazardous and hazardous and waste; Orange: landfill for hazardous waste | | | | | Batch extra | ction test | WATER TO THE TAXABLE PROPERTY OF T | | |-------------------------|-------|---|---------|-------------|------------|--|-----| | | Unit | n | Min | Mean | Median | Maks | C۷ | | pH | pН | 5 | 10,3 | 11 | 11,1 | 11,7 | 5 | | Conductivity | μS/cm | 5 | 2650 | 3222 | 3160 | 3910 | 17 | | Chloride | mg/kg | 5 | 500 | 5138 | 5730 | 7140 | 52 | | Fluoride | mg/kg | 4 | 38 | 55,75 | 57 | 71 | 27 | | Sulfide | mg/kg | 1 | <0,4 | 0,4 | 0,4 | 0,4 | | | Sulfate | mg/kg | 5 | 430 | 1986,2 | 990 | 6440 | 127 | | DOC | mg/kg | 4 | 1260 | 1447,5 | 1445 | 1640 | 12 | | Phenol index | mg/kg | 5 | 0,27 | 0,7002 | 0,42 | 1,7 | -83 | | Totalt dissolved solids | mg/kg | 2 | 22000 | 23800 | 23800 | 25600 | 11 | | Arsenic | mg/kg | 4 | 0,0261 | 0,051425 | 0,0498 | 0,08 | 54 | | Barium | mg/kg | 2 | 1,62 | 3,83 | 3,83 | 6,04 | 82 | | Cadmium | mg/kg | 2 | <0,0005 | <0,0005 | <0,0005 | <0,0005 | 0 | | Cobolt | mg/kg | 1 | 0,0181 | 0,0181 | 0,0181 | 0,0181 | | | Chromium | mg/kg | 5 | 0,0414 | 0,1039 | 0,118 | 0,137 | 36 | | Copper | mg/kg | 5 | 0,357 | 0,591 | 0,616 | 0,863 | 37 | | Molybdenium | mg/kg | 3 | 0,504 | 0,702 | 0,708 | 0,895 | 28 | | Nickel | mg/kg | 5 | 0,413 | 0,7672 | 0,804 | 1,11 | 33 | | Lead | mg/kg | 5 | 0,00216 | 0,009178 | 0,00312 | 0,0216 | 100 | | Vanadium | mg/kg | 1 | 0,0679 | 0,0679 | 0,0679 | 0,0679 | | | Zink | mg/kg | 5 | <0,02 | 0,02888 | 0,0243 | 0,0557 | 52 | | Boron | mg/kg | 2 | 4,19 | 8,245 | 8,245 | 12,3 | 70 | | Mercury | mg/kg | 2 | <0,0002 | 0,0002 | 0,0002 | 0,0002 | 0 | | Antimony | | 2 | 0,0108 | 0,01085 | 0,01085 | 0,0109 | 1 | | Selenium | mg/kg | 5 | 0,0297 | 0,08234 | 0,057 | 0,152 | 62 | | Iron | mg/kg | 3 | 0,069 | 1,043 | 1,21 | 1,85 | 86 | | KOF-Mn | mg/kg | 3 | 370 | 427 | 450 | 460 | 12 | | Ammonium (NH4) | mg/kg | 3 | 8,6 | 17 | 14 | 29 | 61 | | Cyanide-free | mg/kg | 1 | <1 | <1 | <1 | <1 | | | Naphtalene | mg/kg | 4 | <0,002 | 0,01275 | 0,0125 | 0,024 | 71 | | Acenaphtylene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Acenaphtene | mg/kg | 4 | 0,00016 | 0,0034 | 0,0002 | 0,01 | 164 | | Fluorene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | |------------------------|-------|---|---------|---------|---------|--------|-----| | Phenanthrene | mg/kg | 4 | <0,0001 | 0,00961 | 0,00019 | 0,038 | 197 | | Anthracene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Fluoranthene | mg/kg | 4 | <0,0001 | 0,00555 | 0,00555 | 0,011 | 139 | | Pyrene | mg/kg | 4 | <0,0001 | 0,01005 | 0,01005 | 0,02 | 140 | | Benzo(a)anthracene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Chrycene | mg/kg | 4 | <0,0001 | 0,00805 | 0,00805 | 0,016 | 140 | | Benzo (b)fluoranthene | mg/kg | 4 | <0,0001 | 0,00555 | 0,00555 | 0,011 | 139 | | Benzo (k)fluoranthene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Benzo (a) pyrene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Dibenzo(ah)anthracene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Benzo(ghi)perylene | mg/kg | 4 | <0,0001 | 0,00655 | 0,00655 | 0,013 | 139 | | Indeno(1,2,3-cd)pyrene | mg/kg | 4 | <0,0001 | 0,00505 | 0,00505 | 0,01 | 139 | | Sum PAHs16 | mg/kg | 4 | 0,0122 | 0,05283 | 0,0133 | 0,133 | 131 | | Sum PAH carcinogene | mg/kg | 4 | 0,027 | 0,027 | 0,027 | 0,027 | | | PCB 28 | mg/kg | 1 | <0,002 | <0,002 | <0,002 | <0,002 | | | PCB 52 | mg/kg | 1 | <0,002 | <0,002 | <0,002 | <0,002 | | | PCB 101 | mg/kg | 1 | <0,002 | <0,002 | <0,002 | <0,002 | | | PCB 118 | mg/kg | 1 | <0,002 | <0,002 | <0,002 | <0,002 | | | PCB 138 | mg/kg | 1 | <0,002 | <0,002 | | <0,002 | | | PCB 153 | mg/kg | 1 | <0,002 | <0,002 | i | <0,002 | | | PCB 180 | mg/kg | 1 | <0,002 | <0,002 | | <0,002 | | | Benzen | mg/kg | 1 | <0,02 | <0,02 | | <0,02 | | | Toluen | mg/kg | 1 | <0,1 | <0,1 | <0,1 | <0,1 | | | Ethylbenzen | mg/kg | 1 | <0,02 | <0,02 | | <0,02 | | | o-Xylen | mg/kg | 1 | <0,01 | <0,01 | | <0,01 | | | m/p-Xylener | mg/kg | 1 | 1 | | | <0,02 | | | Xylener | mg/kg | 1 | <0,015 | <0,015 | | <0,015 | | | Fraksjon >C10-C12 | mg/kg | 1 | 84 | 84 | | 84 | | | Fraksjon >C12-C16 | mg/kg | 1 | 129 | 129 | | 129 | | | Fraksjon >C16-C35 | mg/kg | 1 | | | | 289 | | | Fraksjon >C12-C35 | mg/kg | 1 | | | | 418 | | | Fraksjon >C35-C40 | mg/kg | 1 | | | | 24 | | | TOC | % | 1 | 2,11 | 2,11 | 2,11 | 2,11 | | ## 3.2.2 Column leaching test (LS 0,1) The results from the column leaching test also show that the Solids from the TCC RotoMill process have a leaching potential that for most parameters are in agreement with the limits set for landfills for inert waste. Only leaching of chloride and fluorine exceed the limit for inert landfills (Table 11). Table 11: Results from column leaching tests of two random samples of Solids from the TCC RotoMill process collected 14.April and 19.July 2011. | | Enhet | 14.April 2011 | 19.July 2011 | |--------------------------|-------|---------------|--------------| | рН | рН | 10,9 | 10,8 | | Conductivity | μS/cm | 43800 | 27100 | | Chloride | mg/kg | 1180 | 848 | | Fluorine | mg/kg | 0 - 0,0746 | 4,44 | | Sulfate (SO4) | mg/kg | 142 | 88 | | DOC | mg/kg | 160 | 106 | | Phenol Index | mg/kg | 0,209 | 0,0353 | | Total diss. Soilds (TDS) | mg/kg | 3760 | | | Arsenic | mg/kg | 0,00205 | 0,00149 | | Barium | mg/kg | 0,152 | 0,0187 | | Cadmium | mg/kg | 0 - 0,0000298 | 0-0,0000202 | | Chromium | mg/kg | 0,000587 | 0,000708 | | Copper | mg/kg | 0,0101 | 0,0221 | | Molybdenium | mg/kg | 0,0789 | 0,0877 | | Nickel | mg/kg | 0,0484 | 0,0641 | | Lead | mg/kg | 0,000586 | 0,00013 | | Vanadium | mg/kg | | | | Zinc | mg/kg | 0,000449 | 0,000379 | | Boron | mg/kg | | | | Mercury | mg/kg | note | 0-0,00000202 | | Antimony | | 0,000074 | 0,0000826 | | Selenium | mg/kg | 0,00102 | 0,00322 | # 4. Toxicity of Solids from the TCC RotoMill process Results from leaching tests give a good indication on the amount of water soluble compounds in the Solids from the TCC RotoMill process. Concentrations in the eluate can not, however, be used in a directly comparison with biological effect concentrations in water. A comparison of the eluate concentrations from the leaching tests and effect concentrations, will however give an indication on what compounds could be a potential problem when using the Solids from the TCC RotoMill process. # 4.1 Biological effect levels Predicted No Effect Concentrations (PNEC) for a parameter is predicted from several biological tests on at least three trophic levels. Most of the PNECs are predicted using standard sensitivity distributions (SSD) and the calculated value is supposed to protect 95% of the species (HC5). Comparison of the eluate concentrations with PNEC-values (Table 12) show that the potential for biological effects in nearby surface waters are largest due to fluoride, copper and nickel (Table 12). For all three elements the toxicity depends on the water softness (concentrations of e.g. calcium). Also the concentrations of chloride, sulphate, arsenic, chromium and ammonium exceed the predicted PNEC-values, but to a lesser degree. Table 12: Concentrations of inorganic and organic parameters in eluates from batch extraction tests (LS10). Green: concentrations lower than PNEC; Blue: concentrations <5 times PNEC; Orange: >5-10 times PNEC; Red: more than 10 times PNEC. | | | PNEC | Not
registered | Comp | Composite sample RC10 + RC4 | | | | |----------------|-------|-------|--|--|-----------------------------|-----------------|-----------------|--| | Parameter | Date | | 1.July
2010 | 13. April
2011 | 19. July
2011 | 05.July
2011 | 05.July
2011 | | | pH | pН | | 11,1 | 11,3 | 10,6 | 11,7 | 10,3 | | | Conductivity | μS/cm | | 2790 | 3600 | 3160 | 3910 | 2650 | | | Chloride | mg/l | 150 | 50 | 557 | 714 | 675 | 573 | | | Fluoride | mg/l | 0,4 | | 3,8 | 4,9 | 6,5 | 7,1 | | | Sulphate (SO4) | mg/l | 100 | 644 | 43 | 137 | 70,1 | 99 | | | DOC | mg/l | | | 134 | 126 | 164 | 155 | | | Phenol Index | µg/l | | 27 | 170 | 40 | 71,1 | 42 | | | Arsenic | µg/l | 5 | 7 | 8 | 2,96 | 1 | 2,61 | | | Barium | µg/l | | | 604 | 162 | | | | | Cadmium | µg/l | 0,08 | <0,05 | <0,05 | <0,05 | <0,05 | | | | Cobalt | μg/l | | 1,81 | | | | | | | Chromium | μg/l | 5 | 4,14 | 9,91 | 12,4 | 11,8 | 13,7 | | | Copper | µg/l | 7,8 | 38,4 | 35,7 | 61,6 | 86,3 | 73,5 | | | Molybdenum | μg/l | | 50,4 | 70,8 | 89,5 | | | | | Nickel | µg/l | 6 | 41,3 | 67,4 | 111 | 80,4 | 83,5 | | | Lead | μg/l | 2,5 | 1,65 | 0,312 | | 2,16 | 0,216 | | | Vanadium | µg/(| | 6,79 | AND THE PROPERTY OF PROPER | | | | | | Zinc | µg/l | | 2 | 2 | 2,43 | 5,57 | 2,44 | | | Boron | µg/l | | 419 | - | | | 1230 | | | Mercury | µg/l | 0,05 | <0,02 | <0,02 | <0,02 | <0,02 | <0,02 | | | Antimony | µg/l | 113 | Contract No. of Contract Contr | 1,09 | 1,08 | | | | | Selenium | μg/l | | 2,97 | 5,7 | 11,8 | 5,5 | 15,2 | | | Ammonium | mg/l | 0,5 | 0,86 | | | 1,4 | | | | Cyanide-free | μg/l | | <100 | | | <10 | <10 | | | Naphtalene | µg/l | 2,4 | 0,061 | | | 1,2 | 1,3 | | | Acenaphtylene | µg/l | 1,3 | <0,01 | | | <0,01 | <0,01 | | | Acenaphtene | µg/l | 3,8 | <0,02 | | | <0,01 | 0,016 | | | Fluorene | μg/l | 2,5 | <0,01 | | | <0,01 | <0,01 | | | Phenanthrene | μg/l | 1,3 | <0,01 | | | 0,02 | 0,017 | | | Anthracene | µg/l | 0,11 | <0,01 | | | <0,01 | <0,01 | | | Fluoranthene | µg/l | 0,1 | <0,01 | | | <0,01 | <0,01 | | | Pyrene | µg/l | 0,023 | <0,01 | | | <0,01 | <0,01 | | | Benzo(a)anthracene | μg/l | 0,012 | <0,01 | <0,01 | :0,01 | |------------------------|------|--------|-------|-------|-------| | Chrycene | µg/l | 0,07 | <0,01 | <0,01 | <0,01 | | Benzo (b)fluoranthene | µg/l | 0,03 | <0,01 | <0,01 | <0,01 | | Benzo (k)fluoranthene | μg/l | 0,03 | <0,01 | <0,01 | <0,01 | | Benzo (a) pyrene | µg/l | 0,05 | <0,01 | <0,01 | <0,01 | | Dibenzo(ah)anthracene | μg/l | 0,0014 | <0,01 | <0,01 | <0,01 | | Benzo(ghi)perylene | µg/l | 0,006 | <0,01 | <0,01 | <0,01 | | Indeno(1,2,3-cd)pyrene | μg/l | | <0,01 | <0,01 | <0,01 | | Sum PAHs16 | μg/l | | <0,02 | 1,22 | 1,33 | The concentrations of PAHs in the eluates are all below PNEC and there is a low probability that these compounds will cause any detrimental biological effects in water bodies receiving runoff from areas containing Solids from the TCC RotoMill process. #### 4.2 Conclusions Based upon comparison of eluate concentrations from the batch extraction test (LS10) with PNEC-values, the detrimental biological effects due to runoff are probable. In most cases, however, the dilution of runoff or seepage from Solids from the TCC RotoMill process is much higher than 10 (which is the ratio between extraction agent (water) and Solid material in the batch extraction test). Another important factor is that the eluate from the Solids from the TCC RotoMill process contain both high concentrations of calcium and dissolved organic carbon, probably resulting in significantly reduced toxicity. The ecological value and vulnerability are other factors that need to be considered in a monitoring programme. # 5. Re-use options for Solids from TCC RotoMill process ### 5.1 Growth media Ecotoxicological tests involving e.g. plants and earthworms have shown treatment of oil based drill cuttings significantly reduce negative effects on these organisms. The results from these experiments indicate that a relatively high amount of Solids from the TCC RotoMill process can be used in soil or growth media without negative effects. The positive effect of the Solids from the TCC RotoMill process are first of all related to the high silt content which will increase the water holding capacity of a soil mixture or growth media. The nutrient content is low, but there may be (generally) some liming capacity in the Solids that can be exploited. ### 5.2 Filler material As a filler material, either individually or mixed with other materials, the Solids from the TCC RotoMill process may increase the water holding capacity. Removal of salts from the drill cuttings will make the clay swell, but at the time of disposal this swelling have diminished. The Solids will, based upon the available information, be suitable as filler material. ### 5.3 Liner at landfills The Solids from the TCC RotoMill process seem to have a lower content of clay (5-15%) than untreated drill cuttings (mean 20-30%; Amundsen and Sørheim 2006). The potential for using the Solids as a liner material at landfills therefore are reduced. Experiments have shown that the hydraulic capacity of some drill cuttings is lower than the limit set for bottom liners at landfills (1.0*10⁻⁹ m/s) (Amundsen et al. 2007). The texture of the Solids from the TCC RotoMill process most likely do not fulfil these requirements. Prior to any application of treated drill cuttings, a risk evaluation has to be performed. The evaluation should include possible positive and the negative aspects of the application. # 6. Parameters for future monitoring at land constructions All parameters that exceed the PNEC-values should be included in future monitoring of water bodies receiving runoff from Solids from the TCC RotoMill process. Also parameters having high concentrations in the eluates should be included. High concentrations mean high relative to concentrations in natural waters or parameters that normally are not present in waters (e.g. hydrocarbons and phenols). Based upon this we suggest that the following list of parameters should be included in monitoring programmes: рΗ Conductivity Dissolved organic carbon (DOC) Arsenic Copper Chromium Nickel Barium Chloride Sulphate Fluoride Hydrocarbons Phenols (Phenol Index) # 7. References Amundsen, C.E. and Sørheim, R. 2006. Waterbased drill cutting from the Barents Sea (in Norwegian). Bioforsk-report 110/2006. Bioforsk, Fredrik A Dahlsvei 20, 1432 Ås. Amundsen, C.E., Aasen, R. and Linjordet, R. 2007. Runoff from drill cuttings used as a top cover (in Norwegian). Bioforsk-report 1/2007. Bioforsk, Fredrik A Dahlsvei 20, 1432 Ås. Esser, K.B. 1996. Reference concentrations for heavy metals in mineral soils, oat and Orchard Grass (*Dactylis Glomerata*) from three agricultural regions in Norway. *Water, Air and Soil Pollution*. 89, 375-397. FOR-2001-12-12-04 nr 1372: Forskrift om vannforsyning og drikkevann (Drikkevannsforskriften). Ottesen, R.T., Bogen, J., Bølviken, B., Volden, T. og Haugland, T. 2000. Geokjemisk atlas for Norge, del 1: Kjemisk sammensetning av flomsedimenter. ISBN 82-7385-192-3. NGU, 7491 Trondheim Klif 2009. Veiledning for miljøtekniske undersøkelser, risikovurdering og tilstandsklasser for jord. TA-xxx/2008. Statens forurensningstilsyn, Pb 8100 Dep, 0032 Oslo. SFT 2007. Revidering av klassifisering av metaller og organiske miljøgifter i vann og sedimenter. SFT-rapport TA 2229/2007. Klif, Pb 8100 Dep, 0032 Oslo.