Retaining Wall Systems

ReCon Wall

Version: 4.0.16253

Project:	New Project
Location:	Site Location
Designer:	xxx
Date:	07.11 .2016
Section:	Section 1
Design Method:	NCMA_09_3rd_Ed, Ignore Vert. Force
Design Unit:	ReCon Series 50 A-24

Leveling Pad: Crushed Stone

GEOMETRY

Design Height:	$5,20 \mathrm{~m}$	Live Load:	$0,00 \mathrm{kNpsm}$
Wall Batter/Tilt:	$3,58 / 0,00 \mathrm{deg}$	Live Load Offset:	$0,00 \mathrm{~m}$
Embedment:	$0,60 \mathrm{~m}$	LL2 Width:	$0,00 \mathrm{~m}$
Leveling Pad Depth:	$0,30 \mathrm{~m}$	Dead Load:	$0,00 \mathrm{kNpsm}$
Slope Angle:	$0,0 \mathrm{deg}$	Dead Load Offset:	$0,0 \mathrm{~m}$
Slope Length:	$0,0 \mathrm{~m}$	Dead Load Width:	$0,00 \mathrm{~m}$
Slope Toe Offset:	$0,0 \mathrm{~m}$		
Vertical δ on Single Depth			
FACTORS OF SAFETY			1,50
Sliding:	1,50	Pullout:	1,50
Overturning:	2,00	Uncertainties:	1,50
Bearing:	2,00	Connection:	1,50
Shear:	1,50	Bending:	
RESULTS	6,65	FoS Overturning:	9,63
FoS Sliding:	106,92	FoS Bearing:	28,68
Bearing	313,14	FoS Total Pullout	6,37
Total Pullout	92,56	FoS Connection:	3,23
Top FoSot:			

ID Height Length Geogrid. Tallow \% Cvrg EP (Pa) LL (Pql) DL (Pqd) TMax FS Str Tal Cn FS Pk Cn FS PO/[Tmax] FS SIdg [fndn] Grid Embed

6	4,88	3,60	SF55	18,06	100	0,90	0,00	0,00	0,90	30,13	10,25	17,10	$3,88 /[0,90]$	100,00
5	4,06	3,60	SF55	18,06	100	3,12	0,00	0,00	3,12	8,68	14,92	7,17	$8,09 /[3,12]$	100,00
4	3,25	3,60	SF55	18,06	100	5,35	0,00	0,00	5,35	5,06	19,59	5,49	$12,24 /[5,35]$	76,72
3	2,44	3,60	SF55	18,06	100	7,58	0,00	0,00	7,58	3,57	24,26	4,80	$9,62 /[7,58]$	41,16
2	1,63	3,60	SF55	18,06	100	9,81	0,00	0,00	9,81	2,76	25,83	3,95	$7,43 /[9,81]$	26,42
1	0,81	3,60	SF55	18,06	100	12,05	0,00	0,00	12,05	2,25	25,96	3,23	$6,06 /[12,05]$	$18,81[6,65]$

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

GLOBAL RESULTS

Global stability is a global analysis (Bishop) with the failure planes originating at the top of the slope / wall and exiting out below the wall in the area infront of the structure. For MSE walls, the resistance of the geogrid
reinforcement is included in the analysis. The curve may go through the base of the wall and the wall shear would be included. In most cases the failure plane will pass below the structure.

ID	Enter Point X	Enter Point Y	Exit Point X	Exit Point Y	Center X	Center Y	Radius	FoS
1	6,11	5,20	$-5,04$	0,60	$-1,43$	7,67	7,94	2,004
1	6,11	5,20	$-4,00$	0,60	$-0,82$	7,02	7,17	2,029
2	5,07	5,20	$-4,00$	0,60	$-0,73$	5,41	5,81	2,062
1	5,07	5,20	$-4,00$	0,60	$-0,97$	5,87	6,08	2,086
2	6,11	5,20	$-5,04$	0,60	$-1,20$	7,12	7,56	2,093
1	6,11	5,20	$-6,08$	0,60	$-2,02$	8,29	8,70	2,094
1	5,07	5,20	$-5,04$	0,60	$-1,57$	6,39	6,75	2,097
1	5,07	$-2,96$	0,60	$-0,33$	5,32	5,40	2,107	
2	5,07	$-5,04$	0,60	$-1,49$	6,21	6,64	2,110	
2	6,11	$-6,08$	0,60	$-1,95$	8,12	8,57	2,117	

Retaining Wall Systems

NOTES ON DESIGN UNITS

The wall section is designed on a 'per unit width bases' (lb/ft/ft of wall or $\mathrm{kN} / \mathrm{m} / \mathrm{meter}$ of wall). In the calculations the software shows $\mathrm{lb} / \mathrm{ft}$ or kN / m, neglecting the unit width factor for simplicity.

The weights for the wall unit are shown as lbs / ft3 (kN/m3). For SRW design a 1 sf unit is typically 1 ft deep, 1.5 ft wide and 8 inches tall (or 1 ft 3). therefore a typical value of 120 pcf is shown. With larger units the unit weight will vary with the size of the unit. Say we have 4 ft wide unit, 1.5 ft tall and 24 inches deep with a tapered shape (sides narrow), built with 150 pcf concrete. We add up the concrete, the gravel fill and divide by the volume and and the results may come out to 140 pcf, as shown in the table. The units with more gravel may have lower effective unit weights based on the calculations.

Hollow Units
Hollow units with gravel fill are treated differently in AASHTO. If the fill can fall out as the unit is lifted, then AASHTO only allows 80% of the weight of the fill to be used for eccentricity (overturning calculations). In the properties page for the units the weight of the concrete may be as low as 75 pcf . This is the effective unit weight of the concrete only (e.g. the weight of the concrete divided by the volume of the unit). The density of the concrete maybe 150 pcf, but not the effective weight including the volume of the void spaces used for gravel fill.

Rounding Errors

When doing hand calculations the values may vary from the values shown in the software. The program is designed using double precision values (64 bit precision: 14 decimal places). Over several calculations the results may differ from the single calculation the user is making, probably inputting one or two already rounded values.

Result Rounding
As noted above the software is based on double precision values. For example, using an NCMA design method an allowable factor of safety of 1.5 the software may calculate a value of 1.49999999999999 , since this is less than 1.5 , it would be false (NG), even though the results shown is 1.50 (results are rounded to 2 places on the screen). In the design check we round to 2 decimal places to check against the suggested value (1.49999999999 rounds to 1.50). Given the precision of the calculation, this will provide a safe design even though the 'absolute' value is less than the minimum suggested.

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

Retaining Wall Systems

DESIGN DATA

TARGET DESIGN VALUES (Factors of Safety)
Minimum Factor of Safety for the sliding along the base
FSsI = 1,5
Minimum Factor of Safety for overturning about the toe
FSot = 2,0
Minimum Factor of Safety for bearing (foundation shear failure)
FSbr = 2,0
-Seismic requirements are 75\%
MINIMUM DESIGN REQUIREMENTS
Minimum embedment depth Min_emb $=0,6 \mathrm{~m}$

INPUT DATA

Geometry
Wall Geometry

Design Height (top of leveling pad to finished grade at top of wall)	H =5,20 m
Embedment (measured from top of leveling pad to finished grade at toe)	emb $=0,60 \mathrm{~m}$
Leveling Pad Depth	$\mathrm{LP}=0,30 \mathrm{~m}$
Face Batter (measured from vertical)	$\mathrm{i}=3,6 \mathrm{deg}$

Slope Geometry
Slope Angle (back slope angle measured from horizontal)
Slope toe offset (horiz. bench from wall to toe of slope)
$\beta=0,0 \mathrm{deg}$

Slope Length (horiz. length from wall to top of slope)
STL_offset $=0,0 \mathrm{~m}$
SL_Length $=0,0 \mathrm{~m}$
NOTE: If the slope toe is offset or the slope breaks within three times the wall height,
a Coulomb Trial Wedge method of analysis is used.

Surcharge Loading

Live Load (assumed transient loading (e.g. traffic))
Live Load Offset (measured from back face of wall)
Live Load Width (assumed strip loading)
$\mathrm{LL}=0,00 \mathrm{kNpsm}$
LL_offset $=0,0 \mathrm{~m}$
LL_width $=0,0 \mathrm{~m}$

Soil Parameters
Reinforced Zone
Angle of Internal Friction
$\varphi=38 \mathrm{deg}$
Cohesion
coh $=0,0 \mathrm{kNpsm}$
Moist Unit Weight
gamma $=19 \mathrm{kNpcm}$
Retained Zone
Angle of Internal Friction
$\varphi=38 \mathrm{deg}$
Cohesion
Moist Unit Weight
coh $=0,0 \mathrm{kNpsm}$
oundation
Angle of Internal Friction
Cohesion
Moist Unit Weight
$\varphi=38 \mathrm{deg}$
coh $=0,0 \mathrm{kNpsm}$
gamma $=19 \mathrm{kNpcm}$

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

RETAINING WALL UNITS

STRUCTURAL PROPERTIES:

N is the normal force [or factored normal load] on the base unit
The default leveling pad to base unit shear is $0,8 \tan (\varphi)$ or
may be the manufacturer supplied data. φ is assumed to be 40 degrees for a stone leveling pad.

Table of Values:

Unit	Ht (in)	Width (in)	Depth (in)	Concr_Vol (cf/ft)	Concr_Density (pcf)	CG (in)
Cap 6.5	165,10	1219,20	609,60	0,10	22,78	$304,80,82,55$
Top Cap	406,40	1219,20	609,60	0,19	22,78	$271,30,203,20$
A-24	406,40	1219,20	609,60	0,23	22,78	$297,18,203,20$
B-39	406,40	1219,20	990,60	0,36	22,78	$472,44,203,20$
C-45	406,40	1219,20	1143,00	0,41	22,78	$541,02,203,20$
D-60	406,40	1219,20	1524,00	0,51	22,78	$701,04,203,20$
E-66	406,40	1219,20	1676,40	0,55	22,78	$764,54,203,20$
F-72	406,40	1219,20	1828,80	0,59	22,78	$830,58,203,20$
G-78	406,40	1219,20	1981,20	0,63	22,78	$89,62,203,20$
H-84	406,40	1219,20	2133,60	0,67	22,78	$965,20,203,20$

Unit	Aggr_Vol (cf)	Aggr_Density (pcf)	Aggr_CG (in)	Equiv_Density (pcf)	Equiv_CG (in)
Cap 6.5	0,00	18,85	0,00, 0,00	22,60	304,80
Top Cap	0,06	18,85	406,58, 203,20	21,80	300,25
A-24	0,01	18,85	441,96, 203,20	22,63	303,96
B-39	0,04	18,85	695,96, 203,20	22,33	492,04
C-45	0,06	18,85	797,56, 203,20	22,29	568,14
D-60	0,11	18,85	1051,56, 203,20	22,13	752,55
E-66	0,13	18,85	1148,08, 203,20	22,00	827,27
F-72	0,15	18,85	1239,52, 203,20	21,97	902,96
G-78	0,18	18,85	1325,88, 203,20	21,94	977,48
H-84	0,20	18,85	1409,70, 203,20	21,91	1053,28

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

Retaining Wall Systems

GEOGRID REINFORCING

STRUCTURAL PROPERTIES: Synteen

GEOGRID PROPERTIES

Name	Tult	RFcr	RFd	RFid	Ci	Cd	Alpha	LTDS
SF55	72,97	1,58	1,10	1,55	0,90	0,90	0,80	27,09

CONNECTION STRENGTHS

Grid	Slope1	Intercept 1	Peak Break	Slope 2	Intercept 2	Max Normal	Cn cr	TLot
SF55	32,00	12,00	42,60	1,00	37,87	87,57	1,00	1,00

SHEAR STRENGTHS
Slope 0 deg
Intercept 324,39 kNpsm

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

Retaining Wall Systems

CALCULATION RESULTS

OVERVIEW

ReCon Wall Systems calculates stability assuming the wall is a rigid body. Forces and moments are calculated about the base and the front toe of the wall. The base block width or bottom reinforcement length is used in the calculations. The concrete units, granular fill over the blocks or reinforced zone soils are used as resisting forces.

EARTH PRESSURES

The method of analysis uses the Coulomb Earth Pressure equation (below) to calculate active earth pressures. Wall friction is assumed to act at the back of the wall face. The component of earth pressure is assumed to act perpendicular to the boundary surface. The effective delta angle is delta minus the wall batter at the back face (assumed to be vertical). If the slope breaks within the failure zone, a trial wedge method of analysis is used.

INTERNAL EARTH PRESSURES

Effective internal Delta angle (2/3 phi)
Coefficient of active earth pressure
Internal failure plane

$$
\begin{aligned}
& \text { delta }=25,3 \text { deg } \\
& \text { ka }=0,193 \\
& \rho=59,4 \mathrm{deg}
\end{aligned}
$$

EXTERNAL EARTH PRESSURES

Effective external Delta angle
Coefficient of active earth pressure
delta $=38,00$ deg

External failure plane
$\mathrm{ka}=0,199$
$\rho=58,1 \mathrm{deg}$

$$
K a:-\frac{\cos \left(\phi_{i}+i\right)^{2}}{\cos (i)^{2} \cdot \cos \left(\delta_{i}-i\right)\left(1+\sqrt{\frac{\sin \left(\phi_{i}+\delta_{i}\right) \cdot \sin \left(\phi_{i}-\beta\right)}{\cos \left(\delta_{i}-i\right) \cdot \cos (i+\beta)}}\right)^{2}}
$$

FORCES AND MOMENTS

ReCon Wall Systems resolves all the geometry into simple geometric shapes to make checking easier. All x and y coordinates are referenced to a zero point at the front toe. The wall image can be exported to CAD for a more detailed output.

Name	Factor γ	Force (V)	Force (H)	X-len	Y-len	Mo	Mr
Face Blocks(W1)	1,00	68,36	--	0,45	--	--	30,47
Soil Fill(W0)	1,00	4,31	--	0,43	--	--	1,86
Soil(W2)	1,00	13,55	--	0,81	--	--	11,02
Soil(W3)	1,00	263,21	--	2,26	--	--	594,16
Soil(W4)	1,00	15,94	--	3,71	--	--	59,13
Pa_h	1,00	--	41,75	--	1,73	72,36	--
Sum (V, H)	1,00	365,38	41,75		Sum Mom	72,36	696,64

Note: live load forces and moments are not included
in SumV or Mr as live loads are not included as resisting forces.

W0: leveling pad
W1: facing units
W2: soil wedge behind the face
W3: rectangular area in MSE area
W4: the wedge at the back of the mass
W5: slope area over the mass

W6: Rectang zone in broken
W7: Live load over the mass

Dead load over the mass
W9: Force Pa
W10: Surcharge load Paq
W11: Dead Load Surchage Paqd

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

BASE SLIDING

Sliding at the base is checked at the soil-to-soil interface between the reinforced mass and the foundation soil.
Forces resisting sliding $=($ SumVr- W0 - W1 - W7)
$\quad 365,38-4,31-68,36-0,00$$\quad$ SumVr $=292,71 \mathrm{kNpm}$

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

Retaining Wall Systems

OVERTURNING ABOUT THE TOE

Overturning at the base is checked by assuming rotation about the front toe by the block mass, soil retained on the blocks or within the reinforced zone. Allowable overturning can be defined by eccentricity (e/L) or by the ratio of resisting moments divided by overturning moment (FSot).

Moments resisting overturning $=\operatorname{Sum}(\mathrm{M} 1$ to M 6$)+\mathrm{MPav}+\mathrm{MPqv}$	$\mathrm{Mr}=696,64 \mathrm{kN}-\mathrm{m}$
Moments causing overturning $=\mathrm{MPah}+\mathrm{MPqh}$	$\mathrm{Mo}=72,36 \mathrm{kN}-\mathrm{m}$
Factor of safety $=\mathrm{Mr} / \mathrm{Mo}$	FSot $=9,63 \mathrm{OK}$

Factor of safety $=\mathrm{Mr} / \mathrm{Mo}$
FSot $=9,63$ OK

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

Retaining Wall Systems

ECCENTRICITY AND BEARING

Eccentricity is the calculation of the distance of the resultant away from the centroid of mass. In wall ReinDesign the eccentricity is used to calculate an effective footing width, or in rigid structure, it is used to calculate the pressure distribution below the base.

Calculation of Eccentricity
e = L/2 - (SumMr + M7 - SumMo)/SumV
$e=3,60 / 2-(696,64+0,00-72,36) / 365,38) \quad e=0,091$
Calculation of Bearing Pressures
Qult $=\mathrm{c}^{*} \mathrm{Nc}+\mathrm{q}^{*} \mathrm{Nq}+0.5^{*}$ gamma*($\left.\mathrm{B}^{\prime}\right)^{*} \mathrm{Ng}$
where:
Nc $=61,35$
$\mathrm{Nq}=48,93$
$\mathrm{Ng}=78,02$
$\mathrm{c}=0,00 \mathrm{kNpsm}$
$\mathrm{q}=11,31 \mathrm{kNpsm}$
$\mathrm{B}^{\prime}=3,42 \mathrm{~m}$
Calculate Ultimate Bearing, Qult Qult $=3066,35 \mathrm{kNpsm}$
Applied Bearing Pressures $=\left(\right.$ SumVert $/ B^{\prime}+(2 B+L P$ depth $) / 2$ * LP depth *gamma $)$
sigma $=106,92 \mathrm{kNpsm}$
Calculated Factors of Safety for Bearing
Qult/sigma $=28,68$

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.
con
Retaining Wall Systems

TENSION CALCULATIONS

Tmax is the maximum tension in the reinforcing based on the earth pressure and surcharge loads applied. In the NCMA design method, earth pressures are calculated using the Coulomb Earth pressure equation. Infinite surcharge loads are applied as $q \times$ ka. In designs were there is a broken back slope, or the surcharge is not uniform over the area, a tie-back wedge analysis method is used.

TABLE OF RESULTS

Elevation[m$]$	Name[m$]$	Ta[kNpm]	Coverage Ratio \%	Tmax[kNpm]	FS Str
4,88	SF55	18,06	100	0,90	
4,06	SF55	18,06	100	30,13	
3,25	SF55	18,06	100	5,35	
2,44	SF55	18,06	100	7,58	
1,63	SF55	18,06	100	5,06	
0,81	SF55	18,06	100	9,81	
2,57	2,76				

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

PULLOUT CALCULATIONS

Pullout is the amount of resistance of the reinforcing has to a pullout failure based on the Tmax applied and the depth of embedement (resistance). In an NCMA design the failure place is defined as the Coulomb failure plane which varies with face batter, backslope angle, and surcharge loads applied. All failure planes begin at the tail. of the facing units.

For AASHTO calculations, the liveload surcharge is not included in the Tmax value for pullout.
Failure Plane Angle $=59,4$ Deg
NOTE: The pullout capacity is limited by the LTDS of the reinforcing layer, not the ultimate pullout capacity calculated.
$\mathrm{F}^{*}=\mathrm{Ci} \times \tan (\mathrm{phi})=0,90 \times 0,78=0,70$
Pullout $=2 \times$ Le $\times \mathrm{F}^{*} \times$ sv \times alpha \times Coverage
TABLE OF RESULTSPeak Connection $=\mathrm{N} \tan ($ slope $)+$ intercept
Connection Capacity $=[\mathrm{N} \tan ($ slope $)+$ intercept $]$ RFcr /tRFcr can be a value obtained from long-term testing or by default could be the creep reduction factor of the geogrid reinforcing.

TABLE OF RESULTS

Elevation[m$]$	Ci	\% Coverage	Tmax[kNpm$]$	$\mathrm{Le}[\mathrm{m}]$	$\mathrm{La}[\mathrm{m}]$	Pullout_[Pr][kNpm]	FS PO
4,88	0,90	100	0,90	0,41	3,19	3,49	
4,06	0,90	100	3,12	0,84	2,76	25,22	
3,25	0,90	100	5,35	1,27	2,33	8,09	
2,44	0,90	100	7,58	1,70	1,90	72,51	
1,63	0,90	100	9,81	2,13	1,47	72,97	72,97
0,81	0,90	100	12,05	2,56	1,04	72,97	

Note: Calculations and quantities are for PRELIMINARY ANALYTICAL USE ONLY and MUST NOT be used for final design or construction without the independent review, verification, and approval by a qualified professional engineer.

Retaining Wall Systems

CONNECTION CALCULATIONS

Connection is the amount of resistance of the reinforcing has to a pullout failure from the facing units based on the Tmax applied and the normal load on the units. In an AASHTO LRFD design, creep on the connection may be applied for frictional and mechanical connections. In NCMA or AASHTO 2002, a frictional failure is based on the peak connection capacity divided by a factor of safety. For a rupture connection the capacity is the peak load divided by a creep reduction factor and a factor of safety.

Frictional ConnectionRupture Connection

Elevation[m]	Name	Tmax[kNpm]	\% Coverage	N[kNpm]	Avail_CN[kNpm]	FS cn
4,88	SF55	0,90	100	5,40	15,37	22,38
4,06	SF55	3,12	100	16,61	29,38	
3,25	SF55	5,35	100	27,82	3,10	
2,44	SF55	7,58	100	39,04	5,39	
1,63	SF55	9,81	100	50,25	38,75	
0,81	SF55	12,05	100	61,46	3,80	

